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REFINEMENT OF THE EQUAL-AREAS LAW FOR UNSTEADY PLANE 

SHOCK WAVES OF MODERATE INTENSITY 

S. N. Makarov UDC 533.6.011.72+534.2.532 

i. The equal-areas law, or Whitham's law, is often used in the theory of weak shock 
waves; it states that the integral of the flow velocity (excess density or pressure) is 
time-invariant (see [1-3]): 

~v = const, d X  
z ( 1 . 1 )  

where L is the wavelength, and X = x - cot is the accompanying coordinate. Equation (i.i) 
can be regarded as a conservation law for the simple-wave equation 

v t + ~vv x = O, 

which is valid in the presence of discontinuities [i]. Here (and from now on) ~ = (i/2)(~ + 
i). The equal-areas law describe the onset and development of an isentropic discontinuity 
in a simple wave and the laws governing the decay of plane shock waves. 

Equation (i.i) follows from an analysis of the corresponding viscous problem. The 
simple-wave equation must be used with allowance for real dissipation (the Burgers equation 
in nonlinear acoustics) [2]: 

v t + ~vv x - -  (b/2po)Vxx = 0 ( 1 . 2  ) 

[b = ~ + (4 /3 )n  + (~ - 1)K/Cp i s  t h e  d i s s i p a t i o n  f a c t o r ,  q and ~ a r e  t h e  s h e a r  and bu lk  
viscosity coefficients, and ~ is the thermal conductivity]. An existing theorem [4] states 
that Eq. (1.2) has a unique conservation law, which coincides with Eq. (i.i). 

We note that the Burgers equation is not a formal device in this case, but is derived 
from the complete system of equations of motion upon satisfaction of the natural asymptotic 
conditions [2, 5] 

~/OX = O(1), ~/Ot = O(p); v, p' = O(p); ~, 4, • = O(p), ( 1 . 3 )  

where ~ is a small parameter (the wave amplitude), and 0' is the excess density. Conditions 
(1.3) have the physical significance that the traveling waveform varies slowly as a result 
of weak nonlinearity and dissipation. 
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The rule (i.i) is valid in small principal-order terms with respect to the wave ampli- 
tude and has error 0(~2). The solution of the Burgers equation also has uniform error 
0(~ 2) [5], even though the equation itself includes second-order small terms. 

2. We now examine the possibility of refining Eq. (i.i) in second-order small terms. 
The correct formulation of the problem requires that the solution of the viscous problem 
be known with the same degree of accuracy. The solution of the Burgers equation is unsuit- 
able for this purpose. We must therefore invoke the more precise evolution equation from 
the theory of finite-amplitude waves in a viscous heat-conducting polytropic gas [6]: 

b 3 b ~ (2.1) 

Equation (2.1) is derived in exactly the same way as the Burgers equation, except that 
third-order small terms are included in the equations of motion, and its error is 0(~+). 
The solution v itself has uniform error 0(~3). The important thing is that all cubic non- 
linear terms cancel out. The term on the right-hand side has the same form as the density 
of an irreversible entropy source in nonequilibrium thermodynamics [7] and characterizes a 

nonisentropic process. 

Equation (2.1) is valid at large Reynolds number when divergent dissipative third-order 
terms of the form b(v2)xx, bivxxx, etc. are disregarded. These terms are vanishingly small 
in the limit b + 0 and do not contribute to the shock condition or the conservation law. 
The term on the right-hand side, on the other hand, provides a finite third-order contribu- 
tion to the condition at the shock discontinuity in the limit b + 0 [i, 6]. 

Equation (2.1) has a conservation law of somewhat unconventional form [6]: 

but only the linear and quadratic terms of the series have any physical significance. Equa- 
tion (2.2) is verified by directsubstitution. Equation (2.1) must first be multiplied by 
exp[(3/2)ev/c0]. Expansion in a series and the elimination of higher order terms give the 

required result : 

v dX --t- ~ v 2 d X  - -  c o n s t .  (2.3) 
L L 

Equation (2.3) is independent ofthe dissipation factor b and refines the equal-areas rule 
(i.i) in higher-order small terms. If the wave amplitude is small, the nonlinear term can 
be excluded. However, it yields a finite contribution for waves of moderate intensity. 

In this situation the nonisentropicity of the flow is manifested in second-order small 
terms with respect to the wave amplitude. If the term on the right-hand side of Eq. (2.1) 
is eliminated, the nonlinear term in Eq (2.3) is equal to zero. This dependence is similar 
to the expression for the velocity of the shock front, where a nonadiabatic correction is 
also observed in second-order rather than in third-order small terms [8]. 

The increase in order is attributable to the cumulative nature of the processes de- 
scribed by Eq. (2.1). Despite the fact that the nonisentropic correction is third-order 
small, it builds up over large distances (times) and ultimately causes the solution v to 
change in second-order small terms. Equation (2.1) specifically reflects this fact. Here 
we have an analogy with the nonlinear term in the Burgers equation or in the simple-wave 
equation. The nonlinear second=order increment also builds up with time and induces a var- 
iation of the solution in principal-order small terms. 

3. Here we show that the rule (2'3) is indeed more precise than (i.i) for unsteady 
shock waves of moderate intensity. In the smooth domain the solution in either case has 
the form of a simple wave and is formulated by the method of characteristics. 

The choice of initial disturbance is an unsteady shock wave in the form of a velocity 
discontinuity generated in air (7 = 1.4) at a certain distance from the center of a planar 
explosion [9]. Figure 1 shows the results of numerical calculations [9] at three different 
times (solid curves). Dimensionless variables are used here and elsewhere [9]; the quantity 
r - /~T (T is dimensionless time) corresponds to a coordinate system moving with velocity 
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Co, and u is the dimensionless flow velocity. The three times correspond to pressure incre- 
ments at the shock front hp = 0.66 atm, 0.29 atm, and 0.16 arm, respectively. 

We take the first profile as an initial condition and formulate an approximate solution 
in the smooth domain by the method of characteristics. The rule (i.i) or (2.3) must be used 
in order to determine the coordinate of the front. In dimensionless variables 

: fudg = C2; (3.1) 
L 

3 e S u 2 d y  = C~ (3 2)  Ludy + x ~  ~ 

( y  = r - r  and  C 2 and  C 3 a r e  c o n s t a n t s ) .  I n  t h e  d e t e r m i n a t i o n  o f  t h e  c o o r d i n a t e  o f  t h e  
front the definite integrals of u and u 2 are computed by the trapezoidal rule with a step 
not greater than 0.01L' (L' is the length of the interval of integration). The missing val- 
ues of the integrands are found by graphical interpolation. The results of calculations ac- 
cording to Eqs. (3.1) and (3.2) are shown in Fig. i. The dashed lines represent the shock 
front according to Eq. (3.1), and the dot-dash lines correspond to Eq. (3.2). We see that 
the rule (2.3) or (3.2) refines the position of the shock front and the amplitude of the 
velocity discontinuity. Table i gives the values of the relative error Af of determination 
of the front coordinate (relative to the characteristic dynamic length r 0 [9]) and the error 
Av of determination of the amplitude of the velocity discontinuity in comparison with the 
numerical solution. The index 2 indicates the result corresponding to the equal-areas rule, 
and the index 3 corresponds to the more precise equation (3.2); T = 0.989, 4.997, 15.93 cor- 
respond to the profiles represented by curves 1-3 in Fig. i. It follows from these data 
that the correction to the equal-areas rule is very significant in the indicated range of 
intensities and diminishes the error at least by one fourth on the average. 

It is instructive to analyze the behavior of the "constants" C 2 and C 3 for the numeri- 
cal solution [9] at various times (see Table i, which also gives the error with respect to 
the initial data). The approximate behavior of the Cf(T) and C3(~) curves is illustrated 
in Fig. 2. Graphical interpolation is used because of a certain scatter of the tabulated 
values. The difference between C 2 and C 3 is particularly large for small ~, when the wave 
amplitude is still not too small. As time passes, the difference becomes less appreciable, 
and the C 2 and C 3 curves merge into one in the limit T § -. 

On the smooth parts of the profile the simple-wave approximation coincides with the nu- 
merical solution almost everywhere. The exception is a small zone in the tail of the wave 
at x Z 15.93, where the result is somewhat too low. This conclusion is consistent with [i0], 
in which it is shown that the simple-wave approximation in the smooth domain can be used up 
to Mach numbers of the order of 1.5. 

4. We now analyze Eq. (2.3) from the gasdynamic point of view. In gas dynamics (see, 
e.g., [i, 3]) the equal-areas rule follows from a solution of the simple-wave type with 
characteristic velocity 

dz/dt = c o q- ev, 

augmented by the expression for the weak shock velocity 

dx,/dt = c o -}- (1/+)e (v 1 + v+). 

(4.1) 

(4.2) 
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TABLE 1 

z - -  P2 - -  Po 
PO 

A/2, % 

N3, % 
Av2, % 

C2 
C3 
AC2, % 

AC3, % 

T 

7,96!7 ]:},9;~: 29,90; 0,989 

0,656 

0,t49 
0,t80 

f,993 

0,459 

3,i 
0,8 
2,9 
0,7 
0,t59 
0,183 
6,7 

i,7 

4,997 

0,289 

9,0 
2,4 
6,2 
1,8 
0,168 
0,186 

13,4 

3,3 

0'~229 

i4 
4~0 
7,6 
2,0 
0,i75 
0,190 

~7,5 

5,6 

0,!63 

21 
%0 
9,1 
2,2 
0,t79 
0,189 

20,i 

5,0 

0,tf9 

&O 

~oA 
2~5 
0,185 
0A92 

23,7 

6,7 

Equation (2.1) gives a more precise result in the limit b ~ 0 [6]: 

dzJdt = c o + (1/2)8 ~n + v2) n u (i/s)e 2 [v]2/Co ( 4 . 3 )  

(Co i s  t h e  e q u i l i b r i u m  sound v e l o c i t y  in  t h e  r e s t  medium).  I t  i s  t h e r e f o r e  r e a s o n a b l e  t o  
assume t h a t  t h e  r u l e  ( 2 . 3 )  can be s u b s t a n t i a t e d  by means of  t h e  s imple -wave  s o l u t i o n  and 
t h e  e q u a t i o n  ( 4 . 3 )  f o r  t h e  v e l o c i t y  of  a m o d e r a t e - i n t e n s i t y  shock wave. 

I t  f o l l o w s  f rom t h e  g e o m e t r i c a l  p a t t e r n  o f  d i s t o r t i o n  o f  t h e  f l ow  v e l o c i t y  p r o f i l e  ( s e e  
[ 3 ] ,  p.  537) t h a t  t h e  c o n s e r v a t i o n  law ( 2 . 3 )  can be r e w r i t t e n  

2 
v 2 v 2 

i ! 
Vl v 1 

The first integral is the difference in the areas intercepted by the shock wave, and the 
second integral is the same difference on the graph of the function v 2. 

We differentiate Eq. (4.4) with respect to time, making use of Eqs. 
Rejecting fourth-order small terms, we obtain 

(4.1) and (4.3). 

----0. 

2 
V2 V2 v2 

v I v~ Vl 

(4.4) 

(4.5) 

It must be borne in mind that the difference x - x s vanishes everywhere at the limits of in- 
tegration, even though they are variable. It is therefore sufficient to differentiate only 
the integrand [3]. The first integral (4.5) vanishes by virtue of the equal-areas rule. 
It is readily verified that the second and third integrals cancel one another, so that Eq. 
(4.5) holds identically. 

Thus, the rule (2.3) follows from the adiabatic solution for a simple-wave and the ex- 
pression (4.3) for the velocity of the shock front. The latter exhibits nonisentropic be- 
havior; if we use only two mechanical conditions at the discontinuity for adiabatic flow, 
the third term in Eq. (4.3) will have a different form. This property is specific to the 
model (see Sec. 2) and implies that we are investigating only the growing nonisentropic 
correction reflected in second-order small terms. Cumulative growth does not occur on the 
smooth parts of the profile, and the simple-wave approximation remains unchanged. Subtler 
nonisentropic effects such as the reflected shock and entropy wake are third-order small 
and require special analysis [2, 6, II]. 

5. The combined application of the simple-wave approximation with Eq. (4.3) has been 
discussed at length in the literature and comprises the substance of the well-known method 
of Friedrichs (see [8]). The rule (2.3) is probably more practical, especially in regard 
to complex disturbances. In particular, it leads to a new law of evolution of a sawtooth 
wave with balanced phases. This law entails asymmetrical distortion of the wave profile 
and has been observed [12] through a numerical analysis of the solutions of Eq. (2.1) in a 
low-viscosity medium. 

678 



Let us consider a sawtooth with the phases in direct sequence in an accompanying coor- 
dinate system. The asymptotic solution in the smooth domain in the limit t + ~ is v = X/et. 
Substituting this expression in Eq. (2.3), we find the coordinate of the discontinuity in 
the positive and negative phases: 

The constants have the form 

= 

3 •  w C : L = V + ~ - c o  , 

where V is the area of the positive or negative phase of the wave at the initial time, and 
W is the area under the graph of the function v 2 in the positive or negative phase. 

Since C + > C-, the length of the positive phase of the wave increases more rapidly 
than the length of the negative phase, so that s + > Is-I. Similarly, the amplitude of the 
discontinuity in the positive phase of the wave exceeds the amplitude of the discontinuity 
in the negative phase. For a sawtooth with the phases in reverse sequence, the compression 
phase follows the rarefaction phase, and the discontinuity is located at the central point 
X = 0. The asymptotic solution is written [I] 

v = ( X  - -  a ) / e t ,  ~ < X < a ;  v = ( X  + a ) / e t ,  - - a  < X < s o ( 5 . 1 )  

(2a is the wavelength; according to the equal-areas rule, the coordinate s o of the discon- 
tinuity is equal to zero at all times). The substitution of Eqs. (5.1) in (2.3) gives the 
more accurate value 

3 s2W t -  t a 2 

which shows that a sawtooth with the phases in reverse sequence is also distorted asymmetri- 
cally. The discontinuity shifts into the negative phase region and moves along the wave 
profile. If t is very large, the negative phase vanishes completely, and the wave itself 
is transformed into a monopolar pulse. 

In application to the problem of a signal that is harmonic at the input, the rule 
(2.3) leads to the inception and growth of a phase shift and endows the flow velocity with 
a second-order small constant component in the sawtooth stage [6]. 
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